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Physics 30H  Lesson 39H  Special Relativity  

I. Frames of reference 

John Glen  was the first American to orbit the Earth in the Mercury spacecraft called 
Friendship 7.  He was asked to describe what it felt like to travel at more than 30,000 
km/h.  He could only answer that he couldn’t tell because there was nothing to measure 
the speed against.  In other words, Glen had no frame of reference to make sense of 
his speed and motion. 
 
Galileo discussed the problem of frames of reference in his study of a falling ball from 
the masthead of a moving ship.  An observer on board the ship will see the ball fall 
straight down and land in front of the mast.  However, an observer on shore will see the 
ball fall in a parabola due to its vertical acceleration and horizontal velocity.  Both 
observers see what they are expected to see because each observer is in a different 
frame of reference.  
 
 
 
 
 
 
 
 
 
   
 
 
  
        
 
 
Both reference frames – the on board observer and the on shore observer – are 
referred to as inertial reference frames.  An inertial reference frame moves at a 
constant velocity – i.e. constant speed and constant direction.  Non-inertial reference 
frames, on the other hand, are frames that are experiencing an acceleration.  For 
example, an observer moving with constant speed in circular motion is experiencing a 
constant acceleration.  His observations of the world will be remarkably different and 
inconsistent with the observations of an observer in an inertial reference frame.  We will 
be dealing with inertial reference frames alone in this lesson. 
 
But note that there are two unstated assumptions in Galileo’s conception of relativity: 
1. Time is absolute – time passes at the same rate for observers in different inertial 

reference frames regardless of their relative motion.   Further, an event witnessed 
by two observers in different inertial reference frames will see the same event at 
the same time.  These events are said to be simultaneous. 

2. Space is absolute – lengths and dimensions do not depend on the relative motion 
of observers.  The length of an object measured by one observer will be the same 
as the length measured by another observer in a different inertial reference frame. 

On board observer – 
moves horizontally with 
the same velocity as the 
ball. 

On shore observer – the 
ball and the boat move 
horizontally past the 
observer. 



Dr. Ron Licht   39H - 2 www.structuredindependentlearning.com 

These assumptions work quite well at common, everyday speeds that are much smaller 
than the speed of light, however if one observer moves rapidly with respect to another 
observer, strange things begin to happen… 
 

II. Einstein’s thought experiment 

As a young man, Albert Einstein knew about Maxwell’s equations for electromagnetic 
waves and light.  However, Einstein asked himself, “What would I see if I rode a light 
beam?”  The answer was that instead of a travelling electromagnetic wave, he would 
see electric and magnetic fields at rest whose magnitude changed in space but did not 
change in time.  Such fields had never been detected and, further, were not allowed by 
Maxwell’s theory.  He argued that it was therefore unreasonable to think that the speed 
of light relative to an observer could be reduced to zero.  From this it could be 
concluded that the relative speed of light could not be reduced at all.  Based on this 
argument Einstein proposed two postulates.  (A postulate is a presupposition that is 
accepted as reasonable but without proof.) 
 

First postulate (the relativity principle): All the laws of physics have the same 

form in all inertial reference frames. 
 

Second postulate (constancy of the speed of light): Light propagates through 

empty space with a definite speed c independent of the speed of the source or 

the observer. 
 
In a paper written in 1905, Einstein demonstrated how time and length were dependent 
on the relative motion of the object and the observer. 
 



Dr. Ron Licht   39H - 3 www.structuredindependentlearning.com 

III. Time dilation  

When we begin to discuss special relativity we are talking about situations where we 
are moving at speeds near the speed of light.  Consider the situation below.  The figure 
shows a spaceship traveling past earth at high speed.  The point of view of an observer 
on the spaceship is shown 
in (a), and that of an 
observer on earth in (b).  
Both observers have 
accurate clocks.  The 
person on the spaceship 
(a) flashes a light and 
measures the time it takes 
for the light to travel 
across the spaceship and 
return after reflecting from 
a mirror.  The light travels 
a distance 2D at speed c 
so the time required, 
which we call to, is 

 
c

D2
to   

The observer on earth, 
(b), observes the same 
process.  But to this 
observer, the spaceship is 
moving; so the light 
travels the diagonal path 
shown in going across the spaceship, reflecting off the mirror, and returning to the 
sender.  Although the light travels at the same speed to this observer (i.e. the second 
postulate), it travels a greater distance.  Hence the time required, as measured by the 
earth observer, will be greater than that measured by the observer on the spaceship.  
The time interval, t, as observed by the earth observer can be calculated as follows.  In 
the time t, the spaceship travels a distance 2L = v t where v is the speed of the 

spaceship.  Thus, the light travels a total distance on its diagonal path of 22 LD2   and 

therefore 

  
t

4/tvD2

t

LD2
c

22222 



  

We square both sides and solve for t to find 

2

2

2
2 v

t

D4
c   

22 cv1c

D2
t


  

We combine this with the formula above for to and find: 

22

0

cv1

t
t


  (time dilation equation) 
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Since the quantity 22 cv1 is always less than or equal to 1, we see that t  to .  This 

is a general result of the theory of relativity, and is known as time dilation.  Stated 
simply, the time dilation effect says that moving clocks are measured to run slowly. 
However, we should not think that the clocks are somehow at fault.  To the contrary, we 
assume the clocks are good ones.  Time is actually measured to pass more slowly in 
any moving reference frame as compared to your own.  This remarkable result is an 
inevitable outcome of the two postulates of the theory of relativity. 
 
The concept of time dilation may be hard to accept, for it violates our commonsense 
understanding.  At low speeds like 1000 m/s, the effect is hardly noticeable: 
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But at speeds approaching the speed of light, say, v = 0.90 c: 
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the earth observer sees the clock running 5.26 times slower than the spaceship 
observer. 
 
When Einstein proposed this theory, there was no way to directly test his idea at the 
time.  However, in 1962 an atomic cesium clock was placed in a jet and the jet flew 
around the earth non-stop.  When the atomic clock was compared to an identical clock 
on the ground, its time was less than the ground clock by exactly the amount predicted.  
Additional confirmation is provided by the decay of muons as they enter the Earth’s 
atmosphere.   Muons are subatomic particles with very short life spans before they 
decay into light energy.  The muons that are moving at very high speeds last up to 9 
times longer than muons at rest.  
 
Time slows down for moving objects.  Biological and mechanical processes will all slow 
down.  A person watching an object move away will see time slow down for the object.  
In like manner, an observer in the “moving” object looking back at the “stationary” object 
will see that the stationary object is moving away from it and will see time slow down for 
the stationary object from his frame of reference. 
 

Example 1  

How long would it take for a space ship to travel 3.0 x 1013 m if it could travel at 0.80 c 
for an observer on Earth and for an observer in the space ship?  

s/m10x3x80.

m10x0.3

v

d
t

8

13

   =  1.25 x 105 s for the observer on Earth 
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   =  7.5 x 104 s for the  

observer in the spaceship. 
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IV. Length contraction  

Just as time is slower for moving objects, the length of an object is measured to be 
shorter when moving than it is at rest.  This is called length contraction.  The formula: 
 
       L  = length of moving object  
       L0 = rest length 
 
which is known as the Lorentz length contraction can be used to calculate the effects of 
high speeds on length measurements.  Note that the only dimension that changes is 
that which is parallel to the direction of motion—width and depth will not change.  In 
addition, while the outside observer sees an object contract, the inside observer does 
not see any difference—when length contracts, measuring devices also contract. 
 

Example 2  

A 100 m object at rest, will appear how long when observed at 0.40 c by an outside 
observer? 
 

 16.01m100
c

)c40.0(
1m100

c

v
1LL

2

2

2

2

o    =  91.65 m 

 
 

V. Mass increase  

The three basic mechanical quantities are length, time and mass.  The first two have 
been shown to be relative—their value depends on the reference frame from which they 
are measured.  We might expect that mass, too, is a relative quantity.  Einstein showed 
that the mass of an object increases as its speed increases according to the formula 

2

2

0

c
v1
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m
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where mo is the rest mass.  Relativistic mass increase has been tested countless times 
on elementary particles like muons, protons and electrons, and the mass has been 
found to increase in perfect agreement with the mass-increase equation above. 
 

Example 3  

An electron enters a magnetic field B = 1.5 T perpendicular to the field lines with a 
speed of 0.50c.  What will be the radius of curvature of its path?  
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  =  1.05 x 10-30 kg 

Fm =    Fc 
q v B =   m v2 
         r 

r = m v =   1.05 x 10-30 kg (1.5 x 108 m/s)  = 6.6 x 10-4 m 
      q B       1.6 x 10-19 C (1.5 T) 

 

2

2
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v1LL   
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A basic result of the special theory of relativity is that no object can equal or exceed the 
speed of light.  As the mass-increase formula shows, as an object is accelerated faster 
and faster its mass becomes larger and larger.  Indeed, if v were to equal c, the 
denominator in the equation would be zero and the mass would become infinite. 
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Example 4  

What is the speed of an object if its relativistic mass is three times the rest mass? 
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VI. Relativistic mass and kinetic energy  

Einstein was intrigued by the results of J.J. Thomson’s experiment in which the charge 
to mass ratio (q/m) for the electron began to decrease at very high speeds.  Since q 
wasn’t changing, the mass had to be getting larger.  Einstein reasoned that when a 
force is applied to an object through a distance, work is done and its speed and kinetic 
energy increases. 
 

 W =  F x d =  Ek  
 
But as the speed approaches the speed of light (c), the speed can no longer increase.  

Note: Speeds above 60% of the speed of light require that relativistic effects must 

be calculated.  Thus the work done results in an increase of mass.   
 

W = Ek  = mc2  where m = m – mo  
 
Ek  = (m – mo ) c2   
 
Ek  = mc2 – moc2   
 



Dr. Ron Licht   39H - 7 www.structuredindependentlearning.com 

The second term of the equation above (moc2) is called the rest energy of an object.  
We call mc2 the total energy and we see that the total energy equals the rest energy 
plus the kinetic energy. 
 
E = mc2 
E = moc2 + EK 

 
Here we have Einstein’s famous formula E = mc2 which relates the concept of energy 
and mass.  The equation indicates that mass can be converted to energy and that 
energy can be converted into mass. 
 

Example 5  

If the kinetic energy of a proton is 6.00 x 10-10 J, what is the proton’s relativistic mass? 
 
Ek  = mc2 – moc2 
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
   

       = 1.67 x 10-27kg + 6.67 x 10-27kg 

       =  8.337 x 10-27 kg 
 
 

Example 6  

A pi meson (o) (mass = 2.5 x 10-28 kg) is a subatomic particle which is produced in 
particle accelerators.  It has a very short life span before it is completely converted into 
a high energy photon of light energy.  What is the energy and frequency of the resultant 

photon in the conversion of a o particle at rest into energy? 
 

  28282

00 s/m10x3kg10x5.2cmE  = 2.25 x 10-11 J 

 

 f = E/h = (2.25 x 10-11 J)/(6.63 x 10-34 J s) = 3.39 x 1022 Hz 
 
 

Example 7  

What is the kinetic energy of a o traveling at 80% of the speed of light. 

 
First, we calculate the relativistic mass m. 

 

  64.1
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c
c8.1
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m
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 = 4.167 x 10-28 kg 

EK = (m - mo)c2 = (4.167 x 10-28 kg - 2.5x 10-28 kg) c2 = 1.67 x 10-28kg(3 x 108m/s)2 
 

EK = 1.5 x 10-11J 
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Example 8  

What is the final speed of an electron after it has accelerated through a potential 
difference of 3.0 MV?   
 
A non-relativistic conservation of energy solution produces the following answer: 

Ep = EK  
 q V = ½ m v2   

 
kg10x11.9

)V10x0.3)(C10x60.1(2

m

Vq2
v

31

619





   =  1.03 x 109 m/s  

But this speed is greater than the speed of light, therefore we have to calculate the 
speed using relativistic energy.  First we calculate the relativistic mass. 
 
EK = 3.0 x 106 eV = 3.0 x 106 (1.60 x 10-19 J/eV) = 4.80 x 10-13 J 
 
Ek  = mc2 – moc2 m = (EK – moc2)/c2 
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using the rearranged mass-increase equation we get 
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v = 2.94 x 108 m/s 
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VII. Hand in Assignment  

1. A beam of a certain type of elementary particle travels at a speed of 2.4 x 108 m/s.  
At this speed, the average lifetime of the particle is measured to be 2.0 x 10-8 s.  
What is the average lifetime of the particle when it is at rest? (1.2 x 10-8 s) 

 

2. What is the speed of a beam of o particles if their average lifetime is measured to 

be 3.5 x 10-8 s?  At rest, o particles have an average lifetime of 2.6 x 10-8 s.  
(2.00 x 108 m/s) 

 
3. A rocket passes you at a speed of 0.80 c.  You measure its length to be 90 m.  

How long would it be at rest? (150 m) 
 
4. A certain star is 20 light years away.  A spaceship is travelling at 0.95 c to reach 

the star from Earth.  How long does the trip require as seen from 
A. an observer on Earth? (21.05 years) 
B. an observer in the spaceship? (6.57 years) 

 
5. What is relativistic mass of a proton accelerated to 60% of the speed of light? 

(2.09 x 10-27 kg) 
 
6. What is the speed required to create a relativistic mass that is exactly four times 

the rest mass? (0.968 c) 
 
7. Calculate the rest energy of an electron. (8.20 x 10-14 J) 
 
8. Calculate the kinetic energy of a proton travelling at 2.7 x 108 m/s. (1.95 x 10-10 J) 
 
9. Calculate the energy that could be provided by the complete conversion of a 

neutron that is travelling at 0.70 c. (2.10 x 10-10J



 If 0.1% of 1.0 kilogram of uranium completely converts into energy in 0.10 s, 
what is the average power of the explosion? (9.0 x 1020 W) 

 
 


