Physics 20 Lesson 8

Acceleration and Displacement – Part I

I. Equations involving distance/displacement

Up to this point, we have had two basic equations to work with:

$$\vec{v}_{Ave} = \frac{\Delta \vec{d}}{\Delta t}$$

$$\vec{a} = \frac{\vec{V}_2 - \vec{V}_1}{\Lambda t}$$

In this lesson we will learn to use equations that relate instantaneous velocities, acceleration, time and displacement. We will use the following equations:

$$\Delta \vec{d} = \vec{v}_1 \Delta t + \frac{1}{2} \vec{a} \Delta t^2$$

$$\Delta \vec{d} = \vec{v}_2 \Delta t - \frac{1}{2} \vec{a} \Delta t^2$$

$$\Delta \vec{d} = \frac{\vec{v}_1 + \vec{v}_2}{2} \Delta t$$

$$\vec{v}_2^2 = \vec{v}_1^2 + 2\vec{a}\Delta\vec{d}$$

To see how these equations were derived see pages 46 to 53 in Pearson.

II. Problem solving method

Use the following general steps in solving problems:

- 1. Read the question. Understand what is being asked for.
- 2. Extract and write down the known and unknown variables.
- 3. Select and write down the equation which contains the variables listed. (It does not matter what order the variables are in or which one is unknown.)
- 4. Manipulate and rearrange the equation if necessary.
- 5. Substitute in the known variables along with their units.
- 6. Solve for the answer.
- 7. Circle or underline the final answer. Remember to include units (and direction where appropriate).

Example 1

An object traveling at 10 m/s accelerates until the final speed becomes 20 m/s. If the time interval was 5.0 s, how far did the object travel over the interval?

 $\Delta \vec{d} = \frac{\vec{v}_1 + \vec{v}_2}{2} \Delta t = \frac{10 \frac{m}{s} + 20 \frac{m}{s}}{2} 5.0 s = 75 \text{ m}$

$$\vec{v}_1 = 10 \text{ m/s}$$

$$\vec{v}_2 = 20 \text{ m/s}$$

$$\Delta t = 5.0 s$$

$$\Delta d = ?$$

Example 2

A car starting from rest, accelerates at 5.0 m/s^2 for an unknown time interval. If the car travels 250 m in the acceleration period, what is the time interval?

Example 3

An object accelerates from 5.0 m/s to 100 m/s. If the object traveled 250 m during this time, what was the acceleration?

$$\vec{v}_1 = 5.0 \text{ m/s}$$
 $\vec{v}_2 = 100 \text{ m/s}$
 $\vec{a} = ?$

$$\Delta d = 250 \text{ m}$$

$$\vec{a} = \frac{\vec{v}_2^2 - \vec{v}_1^2}{2\Delta \vec{d}} = \frac{(100 \frac{\text{m/s}}{\text{s}})^2 - (5.0 \frac{\text{m/s}}{\text{s}})^2}{2(250 \text{m})} = + 20 \text{ m/s}^2$$

Example 4

A ball rolls up an inclined plane with a initial upward speed of 9.0 m/s and stops rolling upward after 3.0 s. Then it begins to roll back down the plane. What was the displacement after 3.0 seconds?

$$\vec{v}_1 = 9.0 \text{ m/s}$$
 $\vec{v}_2 = 0$
 $\Delta t = 3.0 \text{ s}$
 $\Delta \vec{d} = \frac{\vec{v}_1 + \vec{v}_2}{2} \Delta t = \frac{9.0 \frac{\text{m/s}}{\text{s}} + 0 \frac{\text{m/s}}{\text{s}}}{2} 3.0 \text{ s} = 13.5 \text{ m up the incline}$
 $\Delta \vec{d} = ?$

Example 5

A car traveling east at 30 m/s applies its brake to generate an acceleration of 4.0 m/s² west. If the final speed of the car was 5.0 m/s east, how far did the car travel in the acceleration period?

$$\vec{v}_1 = 30 \text{ m/s}$$

$$\vec{v}_2 = 5.0 \text{ m/s}$$

$$\vec{a} = -4.0 \text{ m/s}^2$$

$$\Delta d = ?$$

$$\vec{v}_2^2 = \vec{v}_1^2 + 2\vec{a}\Delta\vec{d}$$

$$\vec{d} = \frac{\vec{v}_2^2 - \vec{v}_1^2}{2\vec{a}} = \frac{(5.0 \text{ m/s})^2 - (30 \text{ m/s})^2}{2(-4.0 \text{ m/s}^2)} = +109 \text{ m} = 109 \text{ m} \text{ east}$$

Example 6

How fast will an object be traveling after falling for 7.0 s?

$$\vec{v}_1 = 0$$

$$\vec{v}_2 = ?$$

$$\Delta t = 7.0 \text{ s}$$

$$\vec{v}_1 = 0$$

$$\vec{v}_2 = \vec{v}_1 + \vec{v}_2 = \vec{v}_1 + \vec{v}_2$$

$$\Delta t = 7.0 \text{ s}$$
 $\vec{v}_2 = \vec{v}_1 + \vec{a} \Delta t = 0 + (-9.81 \text{ m/s}^2)(7.0 \text{ s})$ $\vec{a} = -9.81 \text{ m/s}^2$ $\vec{v}_2 = -66.87 \text{ m/s} = 66.87 \text{ m/s} \text{ down}$

Example 7

A man standing on the roof of a building throws a stone downward at 20 m/s and the stone hits the ground after 5.0 s. How tall is the building?

$$\vec{a} = -9.81 \text{ m/s}^2$$
 $\Delta d = v_1 \Delta t + \frac{1}{2} \vec{a} \Delta t^2 = -20 \text{ m/s} (5.0 \text{ s}) + \frac{1}{2} (-9.81 \text{ m/s}^2)(5.0 \text{ s})^2$ $\Delta d = -222.6 \text{ m}$

$$\Delta d = ?$$
 the building is 222.6 m tall

Example 8

An object is thrown upward at 49.05 m/s.

a. What is the velocity at 3.0 s?

$$\vec{v}_1 = +49.05 \text{ m/s}$$
 $\vec{a} = \frac{\vec{v}_2 - \vec{v}_1}{\Delta t}$ $\vec{v}_2 = ?$ $\Delta t = 3.0 \text{ s}$ $\vec{a} = -9.81 \text{ m/s}^2$ $\vec{v}_2 = 19.62 \text{ m/s up}$ $\vec{v}_3 = 19.62 \text{ m/s up}$

b. What is the velocity after 7.0 s?

$$\vec{a} = \frac{\vec{v}_2 - \vec{v}_1}{\Delta t}$$

$$\vec{v}_2 = \vec{v}_1 + \vec{a} \Delta t = 49.05 \text{ m/s} + (-9.81 \text{ m/s}^2)(7.0 \text{ s})$$

$$\vec{v}_2 = 19.62 \text{ m/s down}$$

c. How long does it take to reach its maximum height?

$$\vec{v}_2 = 0$$
 (stops for an instant) $\vec{a} = \frac{\vec{v}_2 - \vec{v}_1}{\Delta t}$
 $\Delta t = ?$ $\Delta t = \frac{\vec{v}_2 - \vec{v}_1}{\vec{a}} = \frac{(0 - 49.05 \%)}{-9.91 \text{m/s}^2} = 5.0 \text{ s}$

d. What is the maximum displacement?

$$\vec{v}_1 = +49.05 \text{ m/s}$$
 $\Delta d = v_1 \Delta t + \frac{1}{2} \vec{a} \Delta t^2 = 49.05 \text{ m/s} (5.0 \text{ s}) + \frac{1}{2} (-9.81 \text{ m/s}^2) (5.0 \text{ s})^2$ $\vec{a} = -9.81 \text{ m/s}^2$ $\Delta t = 5.0 \text{ s}$ $\Delta d = +122.6 \text{ m} = 122.6 \text{ m} \text{ up}$ $\Delta d = ?$

III. Practice Problems

1. A man traveling at 35 m/s increases to 85 m/s over five minutes. What was the distance traveled over that time interval? (18 km) An object traveling at 100 m/s accelerates at -5.0 m/s² for 15 s. What was the 2. distance traveled by the object as it slowed down over the 15 s? (9.4 x 10² m) An object traveling at an unknown speed accelerates at 4.00 m/s² for 25.0 s. If the 3. object travels 1500 m over the time interval, what was the initial velocity before acceleration? (+10 m/s) A ball is dropped from a height of 3.5 m into the hand of a person waiting below. 4. The ball comes to rest in the person's hand over a distance of 0.25 m. What was the acceleration of the ball when it landed in the person's hand? (137 m/s² up)

IV. Hand-in Assignment

1. Rearrange the following equations for the indicated variable.

a.
$$\vec{v}_{Ave} = \frac{\Delta \vec{d}}{\Delta t}$$

$$\Delta t = ?$$

b.
$$\vec{a} = \frac{\vec{v}_2 - \vec{v}_1}{\Delta t}$$

$$v_2 = ?$$

c.
$$2 a d = v_2^2 - v_1^2$$
 $v_2 = ?$

$$V_2 = ?$$

d.
$$\Delta \vec{d} = \vec{v}_1 \Delta t + \frac{1}{2} \vec{a} \Delta t^2$$
 $v_1 = ?$

$$V_1 = 3$$

e.
$$\Delta \vec{d} = \vec{v}_1 \Delta t + \frac{1}{2} \vec{a} \Delta t^2$$

f.
$$\vec{a} = \frac{\vec{v}_2 - \vec{v}_1}{\Delta t}$$

$$v_1 = ?$$

g.
$$\vec{a} = \frac{\vec{v}_2 - \vec{v}_1}{\Delta t}$$

$$\Delta t = ?$$

h. If
$$v_1 = 0$$
 then $\Delta d = ?$ for $\Delta \vec{d} = \vec{v}_1 \Delta t + \frac{1}{2} \vec{a} \Delta t^2$

i. If
$$v_1 = 0$$
 then $a = ?$ for $\Delta \vec{d} = \vec{v}_1 \Delta t + 1/2 \vec{a} \Delta t^2$

$$\Delta \vec{d} = \vec{v}_1 \Delta t + \frac{1}{2} \vec{a} \Delta t^2$$

j. If
$$v_1 = 0$$
 then $\Delta t = ?$ for $\Delta \vec{d} = \vec{v}_1 \Delta t + \frac{1}{2} \vec{a} \Delta t^2$

$$\Delta d = \vec{v}_1 \Delta t + \frac{1}{2} \vec{a} \Delta t^2$$

k. If
$$v_2 = 0$$
 then $v_1 = ?$ for $\vec{v}_2^2 = \vec{v}_1^2 + 2\vec{a}\Delta\vec{d}$

$$\vec{v}_2^2 = \vec{v}_1^2 + 2\vec{a}\Delta\vec{d}$$

- A car traveling at 60 m/s accelerates at +3.0 m/s² for 9.0 s. How far does the car 2. travel in this time? (6.6 x 10² m)
- A car starting from rest travels 1296 m with an acceleration of 32 m/s². How long 3. does it take for the car to travel that distance? (9.0 s)
- 4. A person drops a ball from a height of 20 m. What is the ball's final speed and how long did it take to fall? (19.8 m/s down, 2.02 s)
- A car travels 1760 m over 10 s. If the acceleration was -20 m/s², what was the 5. initial velocity? (+276 m/s)
- A car traveling at 60 m/s suddenly has its brakes applied bringing the car to a stop 6. after 4.0 s. How far did the car travel in this time? (+120 m)
- A car traveling at 100 m/s comes to a stop in 200 m. How long did it take for the 7. car to come to a stop? (4.0 s)

- 8. A stone is thrown upward with an initial velocity of 11 m/s. Calculate the maximum height and the time the stone is in the air? (6.17 m, 2.24 s)
- 9. A bullet leaves a rifle barrel with a speed of 350 m/s. If the length of the barrel is 0.75 m, determine the acceleration of the bullet while it was in the barrel. $(8.17 \times 10^4 \text{ m/s}^2)$
- 10. An object traveling at 10.0 m/s accelerates at 5.0 m/s² for 12 s. How far does the object travel in the <u>last three seconds</u>? (187.5 m)