# **Lesson 6–5** Volumes of Pyramids and Cones

## I. Lesson Objectives:

1) Solve problems involving the volumes of right pyramids and right cones.

### II. Volume equations

The volume of a right prism is:

$$V = Ah$$



The volume of a right pyramid is:

$$V = \frac{1}{3}Ah = \frac{Ah}{3}$$



A right rectangular prism with length *l*, width *w*, and height *h*, has volume:

$$V = Iwh$$



A right rectangular pyramid with base length *I*, base width *w*, and height *h*, has volume:

$$V = \frac{1}{3} lwh = \frac{lwh}{3}$$



A right cylinder with base radius *r* and height *h* has volume:

$$V = \pi r^2 h$$



A right cone with base radius *r* and height *h* has volume:

$$V = \frac{1}{3}\pi r^2 h = \frac{\pi r^2 h}{3}$$



1

| Question 1  Calculate the volume of a right square pyramid with a base length of 4 ft. and a slant height of 7 ft. to the nearest cubic foot. |
|-----------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                               |

#### Question 2

Determine the volume of a right rectangular pyramid with base dimensions 3.6 m by 4.7 m and height 6.9 m. Answer to the nearest tenth of a cubic metre.

#### **Question 3**

Determine the volume of a cone with a diameter of 8 mm and a height of 13 mm to the nearest cubic millimetre.

### Question 4

A cone has a height of 8 m and a volume of  $300 \, \text{m}^3$ . Determine the radius of the base of the cone to the nearest metre.

## III. Assignment

1. Calculate the volume of the right prism.



2. Calculate the volume of each right cylinder to the nearest cubic unit.



- 3. Calculate the volume of each right pyramid.
  - a) square pyramid
- b) rectangular pyramid





4. Calculate the volume of each right cone. Write the answer to the nearest tenth of a cubic unit.





b)



- 5. A regular tetrahedron has base area 68.0 m<sup>2</sup> and height 10.2 m.
  - a) Sketch the tetrahedron.
  - b) Determine its volume to the nearest tenth of a cubic metre.
- 6. A right cone has slant height 12 yd. and base diameter 4 yd.
  - a) Sketch the cone.
  - b) Determine its volume to the nearest cubic yard.
- 7. A stone monument has the shape of a square pyramid. Its slant height is 1.6 m and the side length of its base is 0.8 m. Determine the volume of the monument to the nearest tenth of a cubic metre.
- 8. An ice cream shop in Bellevue, Alberta, created a new dessert. It is a waffle cone with a height of 5 in. and a base diameter of 2 in., filled with ice cream. Then whipped topping and sprinkles are added.
  - a) The ice cream is level with the top of the cone. How much ice cream can the cone hold? Write the answer to the nearest cubic inch.
  - b) One cubic inch of soft ice cream costs 55¢, the waffle cone costs 35¢, and the whipped topping and sprinkles cost 10¢ per dessert. How much will this dessert cost to produce?
  - c) Suppose the cone had the shape of a right square pyramid with base side length 2 in. and height 5 in. How much ice cream would it hold?

- 9. For each object, its volume, *V*, and some dimensions are given. Calculate the dimension indicated by the variable. Write each answer to the nearest tenth of a unit.
  - a) right rectangular prism



b) right square pyramid



c) right cylinder

 $V = 88.8 \text{ cm}^3$ 







- 10. Sunil immersed a right plastic cone in a measuring cylinder containing water and determined that the volume of the cone was 33.5 cm<sup>3</sup>. He measured the diameter of the base of the cone as 4.0 cm. What is the height of the cone to the nearest tenth of a centimetre?
- 11. An underground tank has the shape of a right cone, supported with its apex beneath its base. The tank collects the water run-off for a three-storey parking garage. The cone has a base diameter of 5.0 m and a height of 3.5 m. (1  $\text{m}^3$  = 1 kL)
  - a) What is the capacity of this tank to the nearest tenth of a kilolitre?
  - b) How much water is in the tank when the water level is 1 m below the top of the tank?
- 12. A right rectangular pyramid has base dimensions 5 m by 3 m, and a height of 10 m. A horizontal cut is made through the pyramid 2 m from its apex and this smaller right rectangular pyramid is removed. What is the volume of the remaining piece?