Math 10

Lesson 2-4 Factoring special polynomials

I. Lesson Objectives:

a) Although factoring by decomposition will always work, some trinomials are easier to factor than others.

II. Special polynomials

When a = 1

$$x^2 - 7x + 12 = (x - 3)(x - 4)$$

Question 1

If possible, factor each trinomial.

a)
$$x^2 + 2x - 8$$

b)
$$a^2 + 7a - 18$$

c)
$$-30 + 7m + m^2$$

Difference of Squares

Consider something like $x^2 - 25$. The expression is a binomial and the first term is a perfect square, the last term is a perfect square and the operation between the terms is subtraction – hence a **difference of squares**. To factor it we write the terms "in squared form." The factors are the positive and negative values of the second term.

$$x^2 - 25 = x^2 - 5^2$$

= $(x - 5)(x + 5)$

Note, it must be a difference of squares, <u>not</u> an addition of squares.

Question 2

If possible, factor each binomial.

a)
$$x^2 - 9$$

b)
$$16a^2 - 25c^2$$

c)
$$7g^3h^2 - 28g^5$$

Question 3

Show why it is not possible to factor $m^2 + 16$.

Perfect Square Trinomials

A perfect square trinomial is of the form $(ax)^2 + 2abx + b^2$ or $(ax)^2 - 2abx + b^2$. The first term is a perfect square, the last term is a perfect square, and the middle term is twice the product of the square root of the first term and the square root of the last term. For example, consider

$$x^2 + 16x + 64$$

Note that x^2 is a perfect square, 64 is a perfect square (8²), and 16 = 8 + 8.

$$x^2 + 16x + 64$$

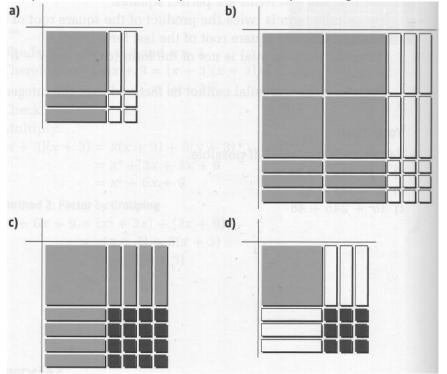
$$= x^2 + 8x + 8x + 64$$

$$= x(x + 8) + 8(x + 8)$$

$$= (x + 8)(x + 8)$$

Question 4

If possible, factor each trinomial.


a)
$$x^2 + 6x + 9$$

b)
$$2a^2 - 44a + 242$$

c)
$$h^2 - 12h - 36$$

III. Assignment

Identify the factors of the polynomial shown by each algebra tile model.

- 2. Determine each product.
 - a) (x 8)(x + 8)
- b) (2x + 5)(2x 5)
- c) (3a 2b)(3a + 2b)
- d) 3(t-5)(t+5)
- 3. What is each product?
 - a) $(x + 3)^2$ b) $(3b 5a)^2$

 - c) $(2h + 3)^2$ d) $5(x 2y)^2$
- 4. Factor each binomial, if possible.
 - a) $x^2 16$
- b) $b^2 121$
- c) $w^2 + 169$
- d) $9a^2 16b^2$
- e) $36c^2 49d^2$
- $f) h^2 + 36f^2$
- g) $121a^2 124b^2$
- h) $100 9t^2$
- 5. Factor each trinomial, if possible.
 - a) $x^2 + 12x + 36$ b) $x^2 + 10x + 25$
 - c) $a^2 24a 144$
- d) $m^2 26m + 169$
- e) 16k² 8k + 1
- f) $49 14m + m^2$
- g) $81u^2 + 34u + 4$
- h) $36a^2 + 84a + 49$
- 6. Factor completely.
 - a) $5t^2 100$
- b) $10x^3y 90xy$
- c) $4x^2 48x + 36$
- d) $18x^3 + 24x^2 + 8x$
- e) x^4 –16
- f) $x^4 18x^2 + 81$

3

7. Each of the following polynomials cannot be factored over the integers. Why not?

a)
$$25a^2 - 16k$$

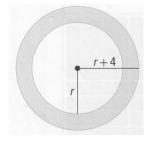
b)
$$x^2 - 7x - 12$$

a)
$$25a^2 - 16b$$
 b) $x^2 - 7x - 12$
c) $4r^2 - 12r - 9$ d) $49t^2 + 100$

d)
$$49t^2 + 100$$

Many number tricks can be explained using factoring. Use $a^2 - b^2 = (a - b)(a + b)$ to make the following calculations possible using mental math.

a)
$$19^2 - 9^2$$


b)
$$28^2 - 18^2$$

c)
$$35^2 - 25^2$$

d)
$$5^2 - 25^2$$

The diagram shows two concentric circles with radii r and r + 4.

- a) Write an expression for the area of the shaded region.
 - b) Factor this expression completely.
 - c) If r = 6 cm, calculate the area of the shaded region. Give your answer to the nearest tenth of a square centimetre.

10. State whether the following equations are sometimes, always, or never true. Explain your

a)
$$a^2 - 2ab - b^2 = (a-b)^2 b \neq 0$$

b)
$$a^2 + b^2 = (a + b)(a + b)$$

c)
$$a^2 - b^2 = a^2 - 2ab + b^2$$

d)
$$(a + b)^2 = a^2 + 2ab + b^2$$

11. Rahim and Kate are factoring $16x^2 + 4y^2$. Who is correct? Explain your reasoning.

Rahim
$$16x^2 + 4y^2 = 4(4x^2 + y^2)$$

Kate

$$16x^2 + 4y^2 = 4(4x^2 + y^2)$$

 $= 4(2x - y)(2x + y)$