Chemistry 20 – Lesson 17 Solubility

/69

1. The classification of a solution depends on the <u>state of the solvent</u> and not the solute.

- a) sugar and water liquid
- /3 b) air
- gas
- c) copper and zinc solid
- d) carbonated beverage liquid
- e) alcohol and water **liquid**
- f) table salt and water liquid
- 2. What is an alloy?
- /1 An alloy is a solid solution of two or more metals.
- 3. Why are water and gasoline (C_8H_{18}) mutually insoluble?
- 1/ Water is polar, gasoline is non-polar. Polar and non-polar compounds tend to not mix.
- 4. Explain why iodine has a low solubility in water but high solubility in cyclohexane (C_6H_{12}) ?
- 1/ Iodine is non-polar. Therefore it dissolves in non-polar cyclohexane but not in polar water.
- 5. From the list below, select those substances which have good solubility in water and those that have good solubility in carbon tetrachloride:
- /3

Cl_2	soluble in CCl ₄
CH ₃ OH	soluble in H ₂ O
$C_{6}H_{14}$	soluble in CCl ₄
NH ₃	soluble in H ₂ O
Br ₂	soluble in CCl ₄
HC1	soluble in H ₂ O

6. How does the solubility of CO_2 in water vary with:

/3

- A. an increase in pressure of CO_{2 (g)}? Explain your answer.
 The solubility of the CO₂ will increase since an increase in gas pressure increases solubility.
- B. an increase in water temperature? Explain your answer.
 The solubility of CO₂ will decrease since an increase in solvent temperature decreases the solubility of gases.
- C. a decrease in water temperature? Explain your answer.
 The solubility of CO₂ will increase since a decrease in solvent temperature increases the solubility of gases.
- 7. How does the solubility of washing soda (Na_2CO_3) in water vary with:

/2

- A. an increase in pressure? Explain your answer.
 The solubility of Na₂CO₃ does not depend on pressure, therefore its solubility will not be affected.
- B. an increase in temperature? Explain your answer.

The solubility of Na₂CO₃ will increase since an increase in temperature increases the solubility of solids in liquids.

- 8. Silver chloride has very low solubility in water. Will stirring increase the solubility of silver chloride in water? Explain.
- /2 No. Solubility is independent of stirring. Stirring may increase the <u>rate</u> of dissolving, but it will not affect if the compound is soluble or not.

	Name of compound	Chemical	Phase at	Soluble in
		Formula	STP	water?
eg.	sodium chloride	NaCl _(aq)	solid	yes
1	silver iodide	AgCl _(s)	solid	no
2	methanol	CH ₃ OH _(aq)	liquid	yes
3	tin (II) phosphate	Sn ₃ (PO ₄) _{2 (s)}	solid	no
4	lithium sulphide	Li ₂ S _(aq)	solid	yes
5	hydrogen carbonate	H ₂ CO _{3(aq)}	solid	yes
6	zinc hydroxide	Zn(OH) _{2 (s)}	solid	no
7	sucrose	$C_{12}H_{22}O_{11(aq)}$	solid	yes
8	gold (I) bromide	AuBr _(aq)	solid	yes
9	lead (IV) acetate	Pb(CH ₃ COO) _{4 (s)}	solid	no
10	calcium sulphate	CaSO _{4 (s)}	solid	no
11	ammonium hydroxide	NH4OH (aq)	solid	yes
12	aluminum sulphide	$Al_2S_{3(s)}$	solid	no
13	barium hydroxide	Ba(OH) _{2 (aq)}	solid	yes
14	paraffin wax	C ₂₅ H _{52 (s)}	solid	no
15	mercury (I) carbonate	$Hg_2CO_{3(s)}$	solid	no
16	manganese (IV) bromide	MnBr _{4 (aq)}	solid	yes
17	iron (III) sulphite	Fe ₂ (SO ₃) _{3 (s)}	solid	no
18	antimony (III) sulphide	$Sb_2S_{3(s)}$	solid	no
19	barium sulphide	BaS (s)	solid	no
20	ammonia	NH _{3 (aq)}	gas	yes
21	nickel (III) sulphide	Ni ₂ S _{3 (s)}	solid	no
22	francium thiosulphate	$Fr_2S_2O_{3(aq)}$	solid	yes
23	ammonium sulphide	(NH ₄) ₂ S _(aq)	solid	yes
24	lead (II) bromide	PbBr _{2 (s)}	solid	no

9. (24 marks)

- 10. What is a saturated solution?
- /1 A saturated solution is a solution where no more solute can dissolve.
- 11. What is a *supersaturated solution*?
- /2 A supersaturated solution is a solution where more solute is dissolved than should be at that temperature. A supersaturated solution is formed when a saturated solution is cooled to a lower temperature. As it cools the molar saturation decreases, but the amount of dissolved solute remains the same. When the solution crystallises it is no longer supersaturated.
- 12. What is *dynamic equilibrium*?
- /2 Dynamic equilibrium refers to the process where the overall concentration of a saturated solution does not change, but there is still an active process of dissolving and crystallization still taking place.
- 13. Give examples of two liquids that are immiscible and two that are miscible with water.
- /2 immiscible oil and gasoline miscible – ethanol and methanol
- 14. Can more oxygen dissolve in a litre of water in a cold stream or a litre of water in a warm lake? Include your reasoning.
- /1 The cooler the liquid the greater the solubility of a gas in the liquid. Therefore the cool water will contain more dissolved oxygen.
- 15. State why you think clothes might be easier to clean in hot water.
- /1 Both soap and dirt are more soluble in water.
- 16. Why do carbonated beverages go "flat" when opened and left at room temperature and pressure?
- /1 At room temperature gases are not very soluble. In addition, the pressure inside a closed can is greater than in an open can. Less pressure translates into lower solubility.
- 17. Write a balanced chemical equation to represent the simultaneous dissolving and crystallizing of sodium chloride for a saturated solution in contact with excess solute.
- /1 NaCl_(s) \rightarrow NaCl_(aq)
- 18. Give definitions for the following terms:
 - /1 Qualitatively, solubility is whether one substance can dissolve in another substance.
 - /1 Quantitatively, solubility is the concentration of a saturated solution at a given temperature.

19.

$$n = \frac{m}{M}$$
 $c = \frac{n}{v}$
/4 $n = \frac{40.0g}{74.55\frac{g}{mol}}$ $c_{KCl} = \frac{0.5366mol}{0.2000L}$
 $n = 0.5366mol$ $c_{KCl} = 2.68\frac{mol}{L}@40^{\circ}C$

20.

20.

$$n = \frac{m}{M}$$
 $c = \frac{n}{v}$

/4
 $n = \frac{45.2g}{36.46\frac{g}{mol}}$
 $c_{HCl} = \frac{1.24mol}{0.100L}$
 $n = 1.24mol$
 $c_{HCl} = 12.4 \frac{mol}{L} @ 25^{\circ}C$

21.

$$n = \frac{m}{M}$$
 $c = \frac{n}{v}$

/4
 $n = \frac{35.7g}{58.44 \frac{g}{mol}}$
 $c_{\text{NaCl}} = \frac{0.611 \text{mol}}{0.100 \text{L}}$
 $n = 0.611 \text{mol}$
 $c_{\text{NaCl}} = 6.11 \frac{\text{mol}}{c} @ 0^{\circ} \text{C}$

22.
$$n = cv$$
 $m = nM$
 $n_{sucrose} = 3.80 \text{ mol}/(0.250\text{L})$ $m_{sucrose} = 0.95 \text{mol}(342.24 \text{ g/mol})$
/4 $n_{sucrose} = 0.95 \text{mol}$ $\overline{m_{sucrose} = 325 \text{g}}$

